Evaggelos Balaskas - System Engineer

The sky above the port was the color of television, tuned to a dead channel

Blog
Posts
Wiki
About
Contact
rss.png twitter linkedin github gitlab profile for ebal on Stack Exchange

AI Notes: Using LLM + Perplexity from the terminal »
  -  
Oct
01
2025
Your MacBook can run AI too
Posted by ebal at 19:14:17 in blog

🚀 Curious about trying out a Large Language Model (LLM) like Mistral directly on your own macbook?

Here’s a simple step-by-step guide I used on my MacBook M1 Pro. No advanced technical skills required, but some techinal command-line skills are needed. Just follow the commands and you’ll be chatting with an AI model in no time.


🧰 What We’ll Need

  • LLM: A CLI utility and Python library for interacting with Large Language Models → a command-line tool and Python library that makes it easy to install and run language models.
  • Mistral → a modern open-source language model you can run locally.
  • Python virtual environment → a safe “sandbox” where we install the tools without messing with the rest of the system.
  • MacBook → All Apple Silicon MacBooks (M1, M2, M3, M4 chips) feature an integrated GPU on the same chip as the CPU.

🧑‍🔬 About Mistral 7B

Mistral 7B is a 7-billion parameter large language model, trained to be fast, efficient, and good at following instructions.

Technical requirements (approximate):

  • Full precision model (FP16) → ~13–14 GB of RAM (fits best on a server or high-end GPU).
  • Quantized model (4-bit, like the one we use here) → ~4 GB of RAM, which makes it practical for a MacBook or laptop.
  • Disk storage → the 4-bit model download is around 4–5 GB.
  • CPU/GPU → runs on Apple Silicon (M1/M2/M3) CPUs and GPUs thanks to the MLX library. It can also run on Intel Macs, though it may be slower.

👉 In short:
With the 4-bit quantized version, you can run Mistral smoothly on a modern MacBook with 8 GB RAM or more. The more memory and cores you have, the faster it runs.


⚙️ Step 1: Create a Virtual Environment

We’ll create a clean workspace just for this project.

python3 -m venv ~/.venvs/llm

source ~/.venvs/llm/bin/activate

👉 What happens here:

  • python3 -m venv creates a new isolated environment named llm.
  • source .../activate switches you into that environment, so all installs stay inside it.

📦 Step 2: Install the LLM Tool

Now, let’s install LLM.

pip install -U llm

👉 This gives us the llm command we’ll use to talk to models.


🛠️ Step 3: Install Extra Dependencies

Mistral needs a few extra packages:

pip install mlx

pip install sentencepiece

👉 mlx is Apple’s library that helps models run efficiently on Mac.
👉 sentencepiece helps the model break down text into tokens (words/pieces).


🔌 Step 4: Install the Mistral Plugin

We now connect LLM with Mistral:

llm install llm-mlx

👉 This installs the llm-mlx plugin, which allows LLM to use Mistral models via Apple’s MLX framework.

Verify the plugin with this

llm plugins

result should look like that:

[
  {
    "name": "llm-mlx",
    "hooks": [
      "register_commands",
      "register_models"
    ],
    "version": "0.4"
  }
]

⬇️ Step 5: Download the Model

Now for the fun part — downloading Mistral 7B.

llm mlx download-model mlx-community/Mistral-7B-Instruct-v0.3-4bit

👉 This pulls down the model from the community in a compressed, 4-bit version (smaller and faster to run on laptops).

Verify the model is on your system:

llm models | grep -i mistral

output should be something similar with this:

MlxModel: mlx-community/Mistral-7B-Instruct-v0.3-4bit (aliases: m7)

🏷️ Step 6: Set a Shortcut (Alias)

Typing the full model name is long and annoying. Let’s create a shortcut:

llm aliases set m7 mlx-community/Mistral-7B-Instruct-v0.3-4bit

👉 From now on, we can just use -m m7 instead of the full model name.


💡 Step 7: One last thing

if you are using Homebrew then most probably you already have OpenSSL on your system, if you do not know what we are talking about, then you are using LibreSSL and you need to make a small change:

pip install "urllib3<2"

only if you are using brew run:

brew install openssl@3

💬 Step 8: Ask Your First Question

Time to chat with Mistral!

llm -m m7 'Capital of Greece ?'

👉 Expected result:
The model should respond with:

Athens

🎉 Congratulations — you’ve just run a powerful AI model locally on your Mac!


👨‍💻 A More Technical Example

Mistral isn’t only for trivia — it can help with real command-line tasks too.

For example, let’s ask it something more advanced:

llm -m m7 'On Arch Linux, give only the bash command using find
 that lists files in the current directory larger than 1 GB,
 do not cross filesystem boundaries. Output file sizes in
 human-readable format with GB units along with the file paths.
 Return only the command.'

👉 Mistral responds with:

find . -type f -size +1G -exec du -sh {} +

💡 What this does:

  • find . -type f -size +1G → finds files bigger than 1 GB in the current folder.
  • -exec ls -lhS {} ; → runs ls on each file to display the size in human-readable format (GB).

This is the kind of real-world productivity boost you get by running models locally.

Full text example output:

This command will find all files (-type f) larger than 1 GB (-size +1G) in the current directory (.) and execute the du -sh command on each file to display the file size in a human-readable format with GB units (-h). The + after -exec tells find to execute the command once for each set of found files, instead of once for each file.


🌟 Why This Is Cool

  • 🔒 No internet needed once the model is downloaded.
  • 🕵️ Privacy: your text never leaves your laptop.
  • 🧪 Flexible: you can try different open-source models, not just Mistral.

though it won’t be as fast as running it in the cloud.


That’s it !

PS. These are my personal notes from my home lab; AI was used to structure and format the final version of this blog post.

Tag(s): llm, mistral, ai, macbook
    Tag: llm, mistral, ai, macbook
AI Notes: Using LLM + Perplexity from the terminal »
  -  

Search

Admin area

  • Login

Categories

  • blog
  • wiki
  • pirsynd
  • midori
  • books
  • archlinux
  • movies
  • xfce
  • code
  • beer
  • planet_ellak
  • planet_Sysadmin
  • microblogging
  • UH572
  • KoboGlo
  • planet_fsfe

Archives

  • 2025
    • October
    • September
    • April
    • March
    • February
  • 2024
    • November
    • October
    • August
    • April
    • March
  • 2023
    • May
    • April
  • 2022
    • November
    • October
    • August
    • February
  • 2021
    • November
    • July
    • June
    • May
    • April
    • March
    • February
  • 2020
    • December
    • November
    • September
    • August
    • June
    • May
    • April
    • March
    • January
  • 2019
    • December
    • October
    • September
    • August
    • July
    • June
    • May
    • April
    • March
    • February
    • January
  • 2018
    • December
    • November
    • October
    • September
    • August
    • June
    • May
    • April
    • March
    • February
    • January
  • 2017
    • December
    • October
    • September
    • August
    • July
    • June
    • May
    • April
    • March
    • February
    • January
  • 2016
    • December
    • November
    • October
    • August
    • July
    • June
    • May
    • April
    • March
    • February
    • January
  • 2015
    • December
    • November
    • October
    • September
    • August
    • July
    • June
    • May
    • April
    • March
    • January
  • 2014
    • December
    • November
    • October
    • September
    • August
    • July
    • June
    • May
    • April
    • March
    • February
    • January
  • 2013
    • December
    • November
    • October
    • September
    • August
    • July
    • June
    • May
    • April
    • March
    • February
    • January
  • 2012
    • December
    • November
    • October
    • September
    • August
    • July
    • June
    • May
    • April
    • March
    • February
    • January
  • 2011
    • December
    • November
    • October
    • September
    • August
    • July
    • June
    • May
    • April
    • March
    • February
    • January
  • 2010
    • December
    • November
    • October
    • September
    • August
    • July
    • June
    • May
    • April
    • March
    • February
    • January
  • 2009
    • December
    • November
    • October
    • September
    • August
    • July
    • June
    • May
    • April
    • March
    • February
    • January
Ευάγγελος.Μπαλάσκας.gr

License GNU FDL 1.3 - CC BY-SA 3.0